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Abstract. An inhomogeneous Heisenberg spin Hamiltonian with single-ion anisotropy is 
used to investigate thr: non-linear excitations in a ferromagnetic chain. By means of the 
Holstein-Primakoff transformation and Glauber's coherent-state representation, the 
equation of motion for the annihilation operator a ( j )  is reduced to a non-linear Schrodinger- 
like equation with variable coefficients. Its non-linear modified terms are strongly restricted 
by the relation between the continuum approximation (tj = u/A,,, where tj is the 'degree' of 
the long wavelength, a is the lattice constant and A(, the characteristic wavelength of the 
excitation) and the semiclassical approximation ( E  = l/*, where E is the degree of trunc- 
ation of the operator expansion and S is the spin length). When assuming that 11 = O(E)  and 
after retaining the terms to O(E'), the motion of the coherent amplitude for the homogeneous 
case satisfies the non-linear Schrodinger equation. The single-soliton and two-soliton bound- 
state solutions are given. The results show that the magnon localization and two-magnon 
bound state are possible in the chain. Other relations between tj and E (tj = O ( E " ' ~ ) ,  tj = 
O(E'") and 7 = O(t.')) are also discussed. 

1. Introduction 

The interaction of spin waves was first investigated by Bethe [l], Dyson [2] and Wortis 
[3].  It was shown that, for all spins and dimensionalities, bound states exist and, €or a 
positive exchange constant and sufficiently large longitudinal anisotropy, there are 
bound states of two spin waves with energies below all continuum energies [l-31. 
Silberglit and Torrance [4] pointed out that the system may create an additional bound 
state when the Hamiltonian contains a single-site anisotropy. By means of the method 
of equation of motion for Green functions, many physicists have studied the problem of 
the bound state of spin waves in recent years [5-lo]. By taking the exchange constants 
J ( j ,  j ' )  as random parameters, Salzberg et a1 [ l l ]  investigated the localization of spin 
waves in a disordered magnetic system by using the cluster Bethe lattice approach. They 
showed the existence of localized spin-wave states due to both isolated magnetic clusters 
and non-propagating magnon modes [ 111. 

On the other hand, the non-linear excitations such as solitary waves or solitons 
in the Heisenberg spin chain have attracted considerable attention in recent years. 
Theoretically, there are several methods to study these non-linear excitations in one- 
dimensional magnets. In the classical method [12, 131, the general soliton solutions 
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are obtained for a continuum version of the classical Heisenberg chain. The gauge 
equivalence between the Heisenberg ferromagnet and the non-linear Schrodinger sys- 
tem has also been shown [ 141. For a quantum spin system, the bosonic representation 
of the spin operators turns out to be avery suitable method for studying soliton excitations 
since quantum corrections can be included in a systematic way. In the spin-coherent- 
state representation [15], one can work directly with spin operators, make no approxi- 
mations to a Hamiltonian and obtain an exact non-linear equation of motion for the spin- 
coherent amplitude [ 161. The other coherent-state treatments use a severely truncated 
operator expansion for S' [ 17-21] or an approximate Hamiltonian which is biquadratic 
in boson operators [22]. Working in Glauber's coherent-state representation and making 
the semiclassical approximation and the long-wavelength approximation, one then finds 
solitary-wave profiles of the system, which is the so-called semiclassical treatment. 

The consistency and validity of the semiclassical treatment which has been widely 
used in the study of non-linear excitations in magnetic systems were re-examined in our 
recent work [23,24]. It is argued that the modified terms of the equation of motion are 
strongly restricted by the relation between the semiclassical approximation and the long- 
wavelength approximation. In this paper we extend our approach to investigate the non- 
linear excitations in an inhomogeneous Heisenberg ferromagnetic chain with single- 
ion anisotropy. The paper is organized as follows. In section 2, we write the model 
Hamiltonian in dimensionless form and introduce the Holstein-Primakoff (HP) trans- 
formation and Glauber's coherent-state representation. The equation of motion is 
obtained in the semiclassical approximation and in the long-wavelength approximation. 
Single-soliton and two-soliton solutions are given in section 3. In section 4, we discuss 
several relations between q and E .  Section 5 is a summary and some comments. 

2. The model Hamiltonian and the equation of motion 

The system under consideration is described by the Hamiltonian 

H - H o  = - Z J ( j ) [ S ( j )  * S ( j  + 1) - S W ]  - c D ( j ) [ ( S Z ( j ) ) 2  - S?h*]  
I I 

-gpB xff(j)[Sz(j) - Shl 
I 

where J(j) are the exchange interaction parameters (assumed to be positive), g is the 
g-factor, ,pB is the Bohr magneton, f( j)  is the intensity of an external magnetic field 
applied in the z direction and D ( j )  are the single-ion anisotropy constants. Here we have 
extended the Hamiltonian used in [4] to an inhomogeneous case where J ,  D and f are 
dependent on site j .  

Introducing the definitions S ( j )  = S ( j ) / h ,  j ( j )  = J(j)/Jo, d(j) = D ( j ) / J o  and 
f ( j )  = gpsf(j)/JoSh ( J o  is a typical exchange constant of the system), we can write the 
Hamiltonian (1) in the dimensionless form 

[ S + ( j ) S - ( j  + 1) + S - ( j ) S + ( j  + 1)]/2 + S Z ( j ) S Z ( j  + 1) - S *  
S 2  

fi = -2 J ( j )  
I 
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where I? = ( H  - Ho)/JoS2h2 and s'(j) = sx ( j )  ? isY(j) with s(j)s(j)  = S(S + 1) .  At 
low temperatures ( a + ( j ) a ( j )  4 2 S ) ,  the HP [25] transformation for the spin operators 

S + ( j )  = [2S - a + ( j ) u ( j ) ] l ' * a ( j )  

F ( j )  = a + ( j ) [ 2 ~  - a + ( j ) ~ ( j ) ] ~ ' *  

S z ( j )  = s - a + ( j ) a ( j )  

( 3 )  

(4 )  

( 5 )  
can be expanded into the power series of E = l/* in the semiclassical approximation 
(i.e. 1ims+= Sh = S,): 

S + ( ~ ) / S  = V'T [ ~ a ( j )  - ~ ~ a + ( j ) a ( j ) a ( j ) / 4  
h-(1 

- ~ ~ a + ( j ) a ( j ) a + ( j ) a ( j ) a ( j ) / 3 2  + O ( E ' ) ]  ( 6 )  

- &sa+ ( ; )a+ ( j ) a ( j ) a  + ( j ) a ( j ) / 3 2  + o(E7) l  (7) 

(8) 

S - ( j ) / S  = V'T [ ~ a + ( j )  - ~ ~ a + ( j ) a + ( j ) a ( j ) / 4  

S z ( j ) / S  = 1 - ~ * a + ( j ) u ( j )  

where a ( j )  and a + ( j )  are the Bose operators. After substituting (6)-(8) into (2) and then 
taking the Heisenberg equation of motion for a( ; ) ,  we obtain 

ioo d a ( j ) / a i =  ~ * ( [ f ( j )  + 2 L ) ( j )  + 2 J ( j ) ] a ( j )  - J ( j  - l ) a ( j  - 1)  - j ( j ) a ( j  + I ) }  

+ E4{ i ( j  - l ) a + ( j ) a ( j ) a ( j  - 1) /2  + J ( j ) a + ( j ) a ( j ) a ( j  + 1) /2  

+ . f ( j )a+( j  + l ) a 2 ( j ) / 4  + j ( j  - l ) a + ( j  - l ) a 2 ( j ) / 4  

+ j ( j -  l ) a + ( j  - l ) a 2 ( j  - 1)/4 + J ( j ) a + ( j  + l ) a 2 ( j  + 1) /4 

- J ( j  - l ) a + ( j  - l ) a ( j  - l ) a ( j )  - J ( j ) a + ( j  + l ) a ( j  + l ) a ( j )  

- W)[ l  + 2 a + ( i > a ( i > l a ( i > >  

+ 3 J ( j ) a + ( j ) a + ( j ) a 2 ( j ) a ( j  + 1) + 2 j ( j  - l ) a + ( j ) u ( j ) a ( j  - 1 )  

+ 2 j ( j ) a + ( j ) a ( j ) a ( j  + 1) - 4 J ( j  - l ) a + ( j  - I ) u + ( j ) u 2 ( j  - l ) a ( j )  

- 4 J ( j ) a + ( j  + l ) a + ( j ) a 2 ( j  + l ) a ( j )  

- 2 J ( j ) a + ( j  + l ) a + ( j  + l)a*(j)a(j + 1 )  

- 2 4 j  - l ) a+( j  - l ) a + ( j  - l)a*(j)a(j - 1 )  

+ j ( j  - ~ ) a + ( j  - l ) a + ( j  - q a 3 ( j  - 1) + 2 j ( j ) a + ( j ) a + ( j  + q a 3 ( j )  

+ J ( j  - I ) a + ( j  - l ) a * ( j  - 1) + J ( j ) a + ( j  + l ) a 2 ( j )  

+ J ( j ) a + ( j  + l ) a + ( j  + q a 3 ( j  + 1) + 2 J ( j  - l ) a + ( j ) a + ( j  - 1)a3(;) 

+ J ( j ) a + ( j  + l ) a 2 ( j  + 1 )  + J ( j  - l ) a + ( j  - l ) a * ( j ) }  + O ( E ~ )  

+ c 6 ( 1 / 3 2 ) { 3 j ( j  - l ) a + ( j ) a ' ( j ) a ' ( j ) a ( j  - 1) 

(9) 

where bo = h w o / J o S ~  and I = w,t are the dimensionless frequency and time, respect- 
ively. w o  is the typical frequency of the excitation. 
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By introducing Glauber’s [26] coherent-state representation for Bose operators 

where 1 a( j ) )  is the coherent-state eigenvector for operator u ( j ) ,  a( j )  is the coherent 
amplitude and the asterisks denote complex conjugation. If the characteristic wave- 
length A. of the excitations (in the case of soliton excitation, L o  corresponds to the 
soliton width) is larger than the lattice constant a ,  we can take the long-wavelength 
approximation: 
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All the quantities in equation (15) are dimensionless. E and q ,  two small parameters 
used in the semiclassical approximation and in the long-wavelength approximation, are 
written explicitly. 

3. One-soliton and two-soliton solutions 

In the semiclassical approximation and the long-wavelength approximation, E and q are 
small quantities. We can assume that 

r7 = O(E) (16) 
i.e. E and q have the same order. The physical meaning of this assumption and the other 
cases of the relations between E and q will be discussed in the next section. In order to 
include the lowest-order non-linear effect, we should retain the terms in equation (15) 
up to O ( E ~ ) .  Then it is reduced to a non-linear Schrodinger-like equation with variable 
coefficients 

( a ,  = [gpBf(x, t )  + 2Sc(1 - 1/2S)D(x,  t ) ] a  + a S c J x a  

- (SCa2/2)[ (Ja) , ,  + Ja,,] - ( 2 S c / W ( x ,  t)I a12a (17) 
when returning to dimensional variables. In the homogeneous case (i.e. J ( x ,  r )  = .lo, 
D ( x ,  t )  = Do andf(x, r )  = f,), equation (17) takes the form 

ia, = [gpBfo + 2Sc(1 - 1/2S)D0]a  - JOa2Sca,,  - (2Sc/S)DO1a1*a. (18) 
This is the non-linear Schrodinger equation, which is a completely integrable system 
and can be solved exactly by the inverse scattering transform [27].  A single-soliton 
solution is 

a(x,  t )  = (JoSk&z2/Do)1/2  sech[ko(x - xo  + 2JoSca2kr] 

where xo,  cpo, k ,  and k are integral constants. Equation (19) represents a wave packet 
travelling to the left with velocity 2JoS,a2k. If k is set to zero, it localizes at position 
x = x, and oscillates with frequency w .  This type of magnon localization results from 
the interaction of the magnon via the non-linearity and dispersion of the system. The 
two-soliton bound-state solution is given by [28] 

a = (JoSa2/D,)1/2Q{k1 sech[kl(x + xo)] 

x exp(-iwlt) + k 2  sech[k2(x - x,)] exp(-iw,t)} (21) 
with 

Q = (k!  - k : ) / [ ( k :  + k:)  - 2klk2{tanh[kl(x + x o ) ]  tanh[k2(x - x O ) ]  

- sech[k,(x + x u ]  sech[k2(x - x O ) ]  cos(wt)}] ( 2 2 )  
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hw = -Jo(Sf/S)a2(k; - k:) = h ( ~ 2  - 0 1 )  (25)  
where k l ,  k 2  and xo are integral constants. Equation (21) represents two solitons, one 
vibrating around the equilibrium position x = -xo with frequency w 1  and the other 
aroundx = x g  with frequency w 2 .  The mutual interaction between them is described by 
the function Q in equation (22). It may be called the two-magnon bound state in the 
Heisenberg ferromagnetic chain. 

In the coherent-state representation, the energy of the single soliton (19) is 

For a single soliton, we have 

( S ' ( j ) ) +  ( S z ( x ,  t ) )  = S(1 - ( J o k ~ a 2 / D g )  

x sech2[k,(x - x o  + 2 S c J o a 2 k t ) ] }  

and, for the two-soliton bound state, we find that 

( S z ( j ) ) - +  ( S i ( x ,  t ) )  = S - S(Joa2/D,,)Q2{k: sech2[k,(x + x o ) ]  

+ k: sech2[k2(x - x o ) ]  + 2 k 1 k 2  

x sech[k,(x + xu)] sech[k2(x - x o ) ]  cos(wt)} (29) 
where Q ,  wl, w 2  and CO are expressed in equations (22)-(25). Equations (28) and (29) 
show explicitly the localization of the magnon and two-magnon bound state in the 
Heisenberg ferromagnetic chain. 

4. Other relations between q and E 

All the work so far on non-linear excitations in the Heisenberg ferromagnet in the 
HP transformation has been based on the semiclassical approximation and the long- 
wavelength approximation [ 17-21]. The two approximations have been considered to 
be independent of each other. In the recent work [23,24], we have shown that the 
relative ratio of E to 7 is very important for determining the modified terms of the 
equation of motion. For a given physical system, E and 7 are related by the characteristic 
quantities of the system. That is to say 7 = g ( E )  (g  is a function of E ) .  Theoretically, we 
cannot determine which case is important because different cases correspond to the 
different physical pictures. Only from the experimental conditions and the initial exciting 
conditions, can one estimate which case is more suitable. The reason is the same as for 
the non-linear theory of shallow water wave [29] in which two approximations (small- 
amplitude approximation and long-wavelength approximation) are also used. In the last 
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section we have discussed only the case q = O(E). Equation (18) is simply the equation 
obtained by Pushkarov and Pushkarov [ 171 but we have generalized it to the inhomo- 
geneous case (equation (17)). If single-ion anisotropy is absent ( D  = 0), equation (17) 
(and also equation (18)) is invalid for the description of non-linear excitations of the 
system because the non-linear term vanishes. We must retain the terms to O ( E ~ )  in 
equation (15). Then the equation of motion takes the form 

when returning to dimensional variables. 
Next, we discuss other relations between E and q .  The general consideration is 

that, in order to make the perturbation theory valid for the description of non-linear 
excitations of the system, the lowest-order non-linear terms should be included in the 
reduced equation of motion. 

4.1. The case 7 = O(E-’”) 

Retaining the terms to O ( $ ) ,  we obtain 
= [ g p B f ( X ,  f) + 2Sc-1 - 1/2S)D(x, t)+ aScJ,]a 

- +a2sc[(Ja)x.r +Jay,,] - 2 ( S , / S ) D ( x ,  t)IalI?a. 
If D ( x ,  t )  = 0, we must retain the terms to O(E’). Then we have 

ia, = [gyBf(x, t )  + S,d,]a - $a2Sc[ (Ja )y , y ,  + Ja,,r] + Wu’S,[(Ja),,, - Ja,,,,] 

(31) 

+ ( S c / S ) a 2 { J [ - a ~ a ,  12 + ta+(a,)? - 4a’a*,] 

- &J,,cu’cu,*} + ( 1 / 4 S 2 ) ~ a ~ ’ ~ .  (32) 
For a homogeneous system, (32) reads 
ia, =gpBfo& - a2ScJo&y,y, + (1/4S2)/a/’~ + (Sc/S)a2J()[-a/@u, 1 ’  + Ba*(a,)’ 

- +a2a,*,]. (33) 
This is simply the equation obtained by de Azevedo et a1 [18]. 

4 .2 .  The case q = O ( 2 )  

Retaining the terms to O ( E ~ ) ,  we obtain 

ia, = [ g p B f f ( X ,  t )  + 2SC(1 - 1 /2S)D(x ,  t )  + aS,J,]a 
- 2a2Sc[(Ja),, +Jay,,] - 2(S , /S )D(x ,  t ) ~ a ~ 2 a .  

If D ( x ,  t )  = 0, the higher-order terms of E must be included. 

4.3.  The case q = 0(d1’) 

(34) 

In order to include the lowest-order non-linear term, we must retain the terms to O(E‘) 
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involving the second-, third- and fourth-order derivatives of a. It is a non-linear 
Schrodinger equation with variable coefficients and higher-order dispersion effect, 
Physically, this is the more accurate equation for the description of the non-linearity, 
inhomogeneity and discreteness of the system. 

5. Discussion and summary 

It is well known that there are several boson representations of spin operators. Besides 
the HP transformation, the Dyson-Maleev [30,31] representation introduces one set of 
boson operators to replace spin operators. When substituting this transformation into 
( l ) ,  one can obtain an exact Hamiltonian in which there is no term higher than fourth 
order. Because the Hamiltonian becomes non-Hermite, this procedure will introduce 
some unphysical states. In the Schwinger [32] boson representation, two sets of boson 
operators are introduced. With use of this, Cieplak and Turski [22] investigated soliton 
excitations in a homogeneous ferromagnetic chain in the continuum limit. They obtained 
an effective Hamiltonian after some quartic terms of boson operators were neglected 
(this results in only one set of bosons being retained). Instead of the boson repre- 
sentation, Balakrishnan and Bishop [ 161, using the spin-coherent state, studied non- 
linear excitations in an isotropic quantum ferromagnetic chain in the continuum approxi- 
mation (the Hamiltonian is expanded to a* order, where a is a lattice constant). This is 
a useful method for the study of non-linear dynamics in a magnetic chain but it seems 
that there are some difficulties in the anisotropic case. 

The HP representation has been widely used in spin-wave theory. We think that 
this is because the approach has many advantages. When using this representation to 
investigate the non-linear excitations in spin system, attention should be paid to the 
relative ratio of E to q for determining the modified terms of the equation of motion. In 
fact, in any perturbation theory involving two or more expansions, one should write the 
equation system in dimensionless form, compare the relative order of the parameters 
appearing in the system and then estimate which case is suitable for given physical 
conditions. 

The inhomogeneous spin system can occur in layered materials which can exhibit a 
quasi-one-dimensional character and other materials may well be grown synthetically 
in a layered manner by molecular beam epitaxy. In this case the equation of motion such 
as (17) has periodic coefficients which may admit the so-called gap soliton solution. The 
concept of the gap soliton was first introduced by Chen and Mills [33] when they studied 
the non-linear optical response of a superlattice. The approach given above is the first 
step in studying the gap soliton in the Heisenberg ferromagnetic chain. 

In summary, we have studied the magnon localization and two-magnon bound state 
in the Heisenberg ferromagnetic chain. With use of the HP transformation and Glauber's 
coherent-state representation, the equation of motion for the operator a ( j )  is reduced 
to a non-linear Schrodinger-like equation in the semiclassical approximation and in the 
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long-wave approximation. For the homogeneous system, the exact and explicit single- 
soliton (localized magnon state) and two-soliton bound-state (two-magnon bound-state) 
solutions are given by the inverse scattering transform. The results show that magnon 
localization and a two-magnon bound state are possible in the Heisenberg ferromagnetic 
chain. The importance of the relative ratio of E to q is emphasized. Several relations 
between E and q are also discussed. 
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